MIT / Engineering / Electrical
Lecture : Introduction and Lumped Abstraction
By Anant Agarwal | Circuits and Electronics
Lecture 1 of 26
Rate this lecture -
Add to My Courses
More Lectures -
Course Description

6.002 is designed to serve as a first course in an undergraduate electrical engineering (EE), or electrical engineering and computer science (EECS) curriculum. At MIT, 6.002 is in the core of department subjects required for all undergraduates in EECS.

The course introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. The 6.002 content was created collaboratively by Profs. Anant Agarwal and Jeffrey H. Lang.

The course uses the required textbook Foundations of Analog and Digital Electronic Circuits. Agarwal, Anant, and Jeffrey H. Lang. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354.

Courses Index
1 : Advanced Topics in Circuit Design   (Elad Alon / Berkeley)
2 : Introduction to Digital Integrated Circuits   (Jan RABAEY / Berkeley)
3 : Advanced Analog Integrated Circuits   (Elad Alon / Berkeley)
4 : Introduction to Microelectronic Circuits   (Bernhard BOSER / Berkeley)
5 : The Fourier Transform and its Applications   (Brad Osgood / Stanford)
6 : Introduction to Linear Dynamical Systems   (Stephen Boyd / Stanford)
7 : Convex Optimization I   (Stephen Boyd / Stanford)
8 : Convex Optimization II   (Stephen Boyd / Stanford)
9 : Computer System Engineering   (Samuel Madden / MIT)
10 : Introduction to Algorithms   (Erik Demaine / MIT)
11 : Principles of Digital Communications I   (Lizhong Zheng / MIT)
12 : Principles of Digital Communication II   (David Forney / MIT)
13 : Understanding Lasers and Fiberoptics   (Shaoul Ezekiel / MIT)
14 : Electromagnetics and Applications   (Multiple Instructors / MIT)
15 : Information and Entropy   (Paul Penfield / MIT)
16 : Fundamentals of Laser   (Sabieh Anwar / LUMS)
17 : Synchrotron Radiation for Materials Science   (David Attwood / Berkeley)
18 : Linear Integrated Circuits   (Clark Nguyen / Berkeley)
19 : Digital Circuit Design   (Ken Boyd / University of New South Wales)
20 : Speech and Audio Processing   (Multiple Multiple / University of New South Wales)